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1 Interpretable Engagement Models for MOOCs
2 Using Hinge-Loss Markov Random Fields

3 Arti Ramesh , Dan Goldwasser, Bert Huang, Hal Daume, and Lise Getoor

4 Abstract—Maintaining and cultivating student engagement is critical for learning. Understanding factors affecting student engagement

5 can help in designing better courses and improving student retention. The large number of participants in massive open online courses

6 (MOOCs) and data collected from their interactions on the MOOC open up avenues for studying student engagement at scale. In this

7 work, we develop an interpretable statistical relational learning model for understanding student engagement in online courses using a

8 complex combination of behavioral, linguistic, structural, and temporal cues. We show how to abstract student engagement types of

9 active, passive, and disengagement as meaningful latent variables using logical rules in our model connecting student behavioral

10 signals with student success in MOOCs. We demonstrate that the latent formulation for engagement helps in predicting two measures

11 of student success: performance, their final grade in the course, and survival, their continued presence in the course till the end, across

12 seven MOOCs. Further, in order to initiate better instructor interventions, we need to be able to predict student success early in the

13 course. We demonstrate that we can predict student success early in the course reliably using the latent model. We also demonstrate

14 the utility of our models in predicting student success in new courses, by training our models on one course and testing on another

15 course. We show that the latent abstractions are helpful in predicting student success and engagement reliably in new MOOCs that

16 haven’t yet gathered student interaction data. We then perform a closer quantitative analysis of different features derived from student

17 interactions on the MOOC and identify student activities that are good indicators of student success at different points in the course.

18 Through a qualitative analysis of the latent engagement variable values, we demonstrate their utility in understanding students’

19 engagement levels at various points in the course and movement of students across different types of engagement.

20 Index Terms—Latent engagement models, student engagement, graphical models, statistical relational models, course success prediction

Ç

21 1 INTRODUCTION

22 THE large number of students participating in MOOCs
23 provides the opportunity to perform rich analysis of
24 large-scale online interaction and behavioral data. This anal-
25 ysis can help improve student engagement in MOOCs by
26 identifying patterns, suggesting new feedback mechanisms,
27 and guiding instructor interventions. Additionally, insights
28 gained by analyzing online student engagement can also
29 help validate and refine our understanding of engagement
30 in traditional classrooms.
31 In this work, we study the different aspects of online stu-
32 dent behavior in MOOCs, develop a large-scale, data-driven
33 approach for modeling student engagement. We study two
34 course success indicators for online courses—1) performance:
35 how well the student performs in the graded elements in

36the courses, and 2) survival: whether the student follows the
37course to completion. We demonstrate the construction of a
38holistic model incorporating content (e.g., language), struc-
39ture (e.g., social interactions in discussion forums), and out-
40come data and show that jointly measuring different
41aspects of student behavior early in the course can provide
42a strong indication of course success indicators.
43Examining real MOOC data, we observe that there are
44several indicators useful for gauging students’ engagement,
45such as viewing course content, interacting with other stu-
46dents or instructors on the discussion forums, and the topic
47and tone of these interactions. Furthermore, students often
48engage in different aspects of the course throughout its
49duration. For example, some students engage in the social
50aspects of the online community—by posting in forums and
51asking and answering questions—while others only watch
52lectures and take quizzes without interacting with the com-
53munity. We take these differences into account and propose
54a model that uses the different behavioral aspects to distin-
55guish between forms of engagement: passive, active, and
56disengagement. We use these engagement types to predict
57student success, and reason about their behavior over time.
58Predictive modeling over MOOC data poses a significant
59technical challenge requiring the ability to combine language
60analysis of forum posts with graph analysis over very large
61networks of entities (students, instructors, assignments, etc.)
62To address this challenge, we use a recently developed statis-
63tical relational learning framework—hinge-loss Markov ran-
64dom fields (HL-MRFs). This framework provides an easy
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65 means to represent and combine behavioral, linguistic, and
66 structural features in a concise manner. Our model is speci-
67 fied using weighted first-order logic rules, thus making it
68 easy to encode and interpret how different behavioral, lin-
69 guistic, structural, and temporal signals are indicative of dif-
70 ferent types of engagement and student success. Our first
71 contribution is constructing a holistic model to represent and
72 reason about various student activities in the MOOC setting.
73 Our work is a step toward helping educators understand
74 how students interact onMOOCs.
75 Our second contribution is providing a data-driven for-
76 mulation that captures student engagement in the MOOC
77 setting. As in the traditional classroom setting, assessing
78 online student engagement requires interpretation of indi-
79 rect cues. Identifying these cues in an electronic setting is
80 challenging, but the large amounts of available data can off-
81 set the loss of in-person communication. We analyze
82 students’ online behavior to identify how they engage with
83 course materials and investigate how engagement can be
84 helpful in predicting student performance and survival in
85 the course. We extend our HL-MRF model to encode
86 engagement as latent variables, which take into account the
87 observed behaviors of online students and their resulting
88 performance and survival in the class. The latent engage-
89 ment variables in our model represent three prominent
90 forms of engagement: 1) active engagement, 2) passive
91 engagement, and 3) disengagement. Uncovering these dif-
92 ferent latent engagement states for students provides a bet-
93 ter explanation of students’ behavior leading to course
94 completion and resulting grades.
95 We apply our models to real data collected from seven
96 Coursera1 courses at University of Maryland, College Park
97 and empirically show their ability to capture behavioral pat-
98 terns of students and predict student success. Our experi-
99 ments validate the importance of providing a holistic view

100 of students’ activities, combining all aspects of online
101 behavior, in order to accurately predict the students’ moti-
102 vation and ability to succeed in the class. We conduct
103 experiments to evaluate two important course success
104 parameters in online courses: course performance and sur-
105 vival. Early detection of changes in student engagement can
106 help educators design interventions and adapt the course
107 presentation to motivate students to continue with the
108 course [1]. We show that our model is able to make mean-
109 ingful predictions using data obtained at an early stage in
110 the class. These predictions can help provide a basis for
111 instructor intervention at an early stage in the course, help-
112 ing to improve student retention rates. Further, we evaluate
113 the strength of our models in predicting student survival on
114 unseen courses and demonstrate that our models are able
115 to make meaningful predictions for previously unseen
116 courses, even at an early stage in the course. We also per-
117 form a comprehensive feature evaluation in predicting stu-
118 dent success in MOOCs in different time periods of the
119 course. Our interpretable probabilistic framework helps in
120 encoding the different feature dependencies and evaluating
121 their individual and combined effect on student success
122 and engagement. Our findings strengthen the importance of

123using a holistic model and uncover important details about
124student interactions that is helpful for instructors. Finally,
125we use the latent engagement variables to unearth patterns
126in student engagement over the course of the class and
127detect changes in engagement. This can be potentially used
128by instructors to understand student movement from one
129engagement type to another and initiate interventions.
130This work expands on the work described in [2], by pro-
131viding additional experimental results. We look into several
132measures of student success, such as predicting student per-
133formance, predicting final student survival, and early pre-
134diction of student survival, building on our work in [3] and
135[2], and provide experimental results for seven MOOCs,
136covering a wide range of topics. We also include a suite of
137results for predicting student survival, predicting student
138survival at early time periods, predicting student survival
139for unseen courses, and predicting student survival early
140for unseen courses. We also include a comprehensive ana-
141lysis of engagement variables by providing intuition on
142engagement patterns and changes to the students’ engage-
143ment levels over time. Our analysis significantly improves
144our understanding of the early signs of student drop out.

1452 RELATED WORK

146Here, we outline related work specifically related to our two
147contributions: 1) engagement in MOOCs, and 2) predicting
148grades/dropout/outcomes in online courses. These can be
149classified into two broad categories: 1) work on classroom
150and traditional distance education settings, and 2) work on
151larger settings such as MOOCs.

1522.1 Engagement in Classroom Settings

153Much of the work beforeMOOCs concentrate on understand-
154ing student engagement using various forms of instructor
155intervention experiments in classroom settings. Postel et al.
156[4] analyze the effects of intervention on school dropouts and
157Tinto et al. [5] examine the reasons behind student attrition in
158the undergraduate level and discuss possible preventative
159measures using intervention. Several works perform targeted
160studies on the effect on intervention on student engagement
161[6], [7], [8]. Rocca et al. [9] presents an analysis of student
162engagement in classroom settings, comparing the effects of
163different methods of teaching on student participation. These
164studies primarily analyze the effectiveness of various instruc-
165tor intervention techniques and teaching methodologies on
166getting students to participate in classroom discussions. Fur-
167ther, these studies primarily refer to participation in class-
168room discussions as student engagement. Other forms of
169student engagement such as attending lectures and giving
170exams are considered integral part of the class. Herrmann [8]
171analyzes the effect of intervention on passively engaged stu-
172dents to make them engage more actively in the classroom.
173However, in online settings, the diverse population of the stu-
174dents leads to varied participation levels. This calls for a more
175nuanced notion of engagement. Drawing analogies from
176classroom settings and carefully considering student dynam-
177ics in online settings, wemodel three types of student engage-
178ment. We refer to participating in discussion forums, which is
179analogous to participating in classroom discussions as active
180engagement. We refer to following class materials and tests1. https://www.coursera.org
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181 as passive engagement and dropping out of the class as
182 disengagement. Kuh et al. [10] and Carini et al. [11] study the
183 relationship between student engagement and academic per-
184 formance for traditional classroom courses; they identify sev-
185 eral metrics for user engagement (such as student-faculty
186 interaction, level of academic challenge). Carini et al. [11]
187 demonstrate quantitatively that though most engagement
188 metrics are positively correlated to performance, the relation-
189 ships in many cases can be weak. Our work borrows ideas
190 from Kuh et al. [10], Carini et al. [11], and from statistical sur-
191 vivalmodels [12] and adapts these to theMOOC setting.

192 2.2 Engagement in MOOCs

193 There is growing work studying student engagement in
194 MOOCs [13], [14], [15], [16], [17], [18]. Here, we explain dif-
195 ferences of our work from existing work:

196 1) Most existing work only model a single form of
197 engagement and do not differentiate between differ-
198 ent forms of engagement such as active and passive
199 [17]. In our work, we model multiple different forms
200 of engagement, active, passive, and absence of
201 engagement as three different variables, thus incor-
202 porating the ability to distinguish between these dif-
203 ferent types of engagement. Also, our engagement
204 variables are continuous-valued, so it is possible for
205 a student to have multiple different types of engage-
206 ment simultaneously, providing a finer-grained
207 analysis of engagement.
208 2) Our engagement variables are learned via predictive
209 analysis, as opposed to unsupervised models [15],
210 which allow our models to use feedback from stu-
211 dent success variables of performance and survival
212 and other features and their combination to guide
213 latent variable values during training.
214 3) We define engagement explicitly according to educa-
215 tion theory as discussed by Rocca et al. [9]. The intui-
216 tive and interpretable nature of our model that
217 captures dependencies among features and feature-
218 groups and the meaningful nature of our latent
219 engagement variables make our models easy to
220 encode and interpret by domain experts. Existing
221 approaches use machine learning approaches such
222 as logistic regression/factor graphs [13], [16], [19],
223 [20], which lack interpretability on how different fea-
224 tures/feature-groups come together to predict stu-
225 dent engagement and performance, which our
226 models especially bring forth via first-order logic
227 rules.
228 4) Further, our experimental results in Section 5 demon-
229 strate that our models, especially model with latent
230 engagement variables, can achieve superior predic-
231 tion performance on courses previously unseen by
232 themodel, asserting that the latent engagement varia-
233 bles indeed abstract important behavioral, linguistic,
234 structural, and temporal information that is useful
235 across courses.

236 2.3 Learning Analytics

237 There is also a growing body of work in the area of learning
238 analytics. Various works analyze student dropouts in

239MOOCs [16], [19], [20], [21], [22], [23], [24], [25]. However,
240all these works only consider final grades as the measure of
241student success. Due to the presence of a diverse student
242population in MOOCs, we use a combination of perfor-
243mance and survival for measuring student success. Some
244works also model student engagement in MOOCs [26], [27],
245[28], while others focus on discussion forums and post-test
246performance [29], [30]. These works use students interacting
247with the online MOOC platform a sign of engagement and
248analyze the different factors surrounding their online pres-
249ence such as content in the discussion forums, and quality
250of the videos. They however do not consider nuanced defi-
251nitions of engagement that we model in our work. [31]
252develop models to predict learning outcomes early in online
253courses. While their approach can predict learning out-
254comes early, their models function as a black-box classifier,
255thus providing little insight on how specific features/
256feature-groups, outcomes, and engagement come together
257for this prediction. The most significant difference between
258our approach and existing work on predicting learning out-
259comes/dropout in MOOCs is that we encode meaningful
260combinations of several factors that contribute to student
261engagement and hence their survival in online courses
262using first-order logic rules, which provide our models with
263superior interpretability. Further our experimental results
264show the performance of our models on early prediction
265and previously unseen courses, which further demonstrates
266the capabilities of the model in prediction. Our work will
267potentially pave the way for constructing better quality
268MOOCs, which will then result in increase in enrollment
269and student retention.

2702.4 Hinge-Loss Markov Random Fields (HL-MRFs)
271and Probabilistic Soft Logic

272To model the different types of interactions between fea-
273tures and course success, we propose a powerful approach
274using HL-MRFs. HL-MRFs falls under the class of statistical
275relational learning models, which combine logic and proba-
276bility to create richer models. Often in structured domains,
277first order logic is used to encode intricate dependencies
278between the different features, latent, and target variables.
279Statistical relational models use logic to define feature func-
280tions in a probabilistic model, to create richer models that
281are capable of encoding both structural dependencies and
282uncertainty in the data.
283Hinge-loss Markov random fields (HL-MRFs) are a scal-
284able class of continuous, conditional graphical models [32].
285Inference of the most probable explanation in HL-MRFs is a
286convex optimization problem, which makes working with
287HL-MRFs very efficient in comparison to many relational
288modeling tools that use discrete representations

P ðY jXÞ / exp
�

�
X

M

r¼1

�rfrðY ;XÞ
�

frðY ;XÞ ¼ maxflrðY ;XÞ; 0gð Þrr ;

(1)

290290

291where frðY ;XÞ is a hinge-loss potential corresponding to an
292instantiation of a rule r containing observed features X and
293target variables Y that we are interested in predicting. The
294linear function lr refers to a linear combination of X and Y

295and an optional exponent rr 2 f1; 2g. �r gives the weight of
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296 the rule. Each rule is then grounded using actual data creat-
297 ing multiple instantiations of the rule. The weights and
298 potentials are grouped into templates, which are then be
299 used to define HL-MRFs for the MOOC data.

300 2.4.1 Probabilistic Soft Logic

301 HL-MRF models can be specified using Probabilistic Soft
302 Logic (PSL) [32]. PSL is a framework for collective, probabi-
303 listic reasoning in relational domains, which uses syntax
304 based on first-order logic as a templating language for con-
305 tinuous graphical models over random variables represent-
306 ing soft truth values. Like other statistical relational
307 learning methods, PSL uses weighted rules to model the
308 dependencies in a domain. However, one distinguishing
309 aspect is that PSL uses continuous variables to represent
310 truth values, relaxing Boolean truth values to the interval
311 [0,1]. Triangular norms, which are continuous relaxations of
312 logical connectives AND and OR, are used to combine the
313 individual atoms in the first-order clauses. Logical conjunc-
314 tions of Boolean predicates X and Y (X ^ Y ) can be general-
315 ized to continuous variables using the hinge function max
316 {X þ Y � 1; 0}, also known as the Lukasiewicz t-norm. Simi-
317 larly, disjunctions (X _ Y ) are relaxed to min{X þ Y; 1}, and
318 :X to 1�X. Using data, we ground out substitutions for
319 these logical terms in the rules. The groundings of a tem-
320 plate define hinge-loss potentials that share the same form
321 and the same weight.
322 An example of a PSL rule is

� : P ðaÞ ^Qða; bÞ ! RðbÞ;
324324

325 where P, Q, and R are predicates, a and b are variables, and �

326 is the weight associated with the rule. Inference in HL-
327 MRFs is a convex optimization problem, which makes
328 working with PSL very efficient in comparison to relational
329 modeling tools that use discrete representations.
330 PSL enables us to encode our observed features, latent
331 and target variables as logical predicates and design models
332 by writing rules over these predicates. The expressiveness
333 and flexibility of PSL allows us to easily build different
334 models for MOOC data, and we exploit this by comparing a
335 model that represents multiple forms of latent engagement
336 against a simpler model that directly relates the observable
337 features to student success. To demonstrate this, consider
338 the task of collectively predicting student performance, by
339 capturing how students interact with each other in the dis-
340 cussion forums.
341 Let U1 and U2 be two students interacting in the same
342 thread in the discussion forum, posting posts P1 and P2

343 in the discussion forum, respectively. Predicates POST(U1,
344 P1) and POST(U2, P2) denote student U1 posting P1, and U2

345 posting P2 in the discussion forum. The predicate SAMETH-

346 READ(P1, P2) captures if posts P1 and P2 are in the same
347 thread. The PSL rule below captures the influence stu-
348 dents have on each other when interacting in the forums.
349 Students U1 and U2 post in the same threads, hence influ-
350 ence each other to have similar succeeding abilities. This
351 example especially brings out the relational and collective
352 nature of our model, whereby we can reason about users’
353 prediction performance jointly based on their interaction
354 with each other

� : POSTðU1;P1Þ ^ POSTðU2;P2Þ ^ SAMETHREADðP1;P2Þ

^ SUCCESSðU1Þ ! SUCCESSðU2Þ: 356356

357

358The potential fðY;XÞ ¼ ½maxfY 1
U1;P1

þ Y 1
U2;P2

þ Y 2
P1;P2

þ

359Y 3
U1

� Y 3
U2

� 1; 0g�p is one minus the truth value of the Bool-

360ean formula given above when Y 1
U1;P1

; Y 1
U2;P2

; Y 2
P1;P2

; Y 3
U1
;

361and Y 3
U2

2 ½0; 1�. Since the variables take on values in [0, 1],
362the potential is a convex relaxation of the implication. An
363HL-MRF with this potential function assigns higher proba-
364bility to variable states that satisfy the logical implication
365above, which can occur to varying degrees in the continu-
366ous domain. Given the behavioral data containing all stu-
367dent interactions, PSL constructs the fully ground HL-MRF
368by grounding out substitutions for different U1, U2, P1, and
369P2 and subsequently generating potential functions for all
370these substitutions.

3712.4.2 Latent Variables in HL-MRFs

372HL-MRFs admit various learning algorithms for fully-super-
373vised training data, and are amenable to expectation maximi-
374zation (EM) for partially-supervised data with latent
375variables [33]. Latent variables can improve the quality of
376probabilistic models in many ways. Using latent variables to
377mediate probabilistic interactions can improve generalization
378by simplifying models. HL-MRFs’ capability in representing
379continuous latent variables is helpful in expressing more
380nuanced information when compared to discrete latent varia-
381bles. Latent variable HL-MRFs are accurate and scalable for
382three reasons: 1) the continuous variables of HL-MRFs can
383express complex, latent phenomena, such as mixed group
384memberships, which add flexibility and modeling power to
385these models, 2) fast, exact inference for HL-MRFs can iden-
386tify the most probable assignments to variables quickly, and
3873) HL-MRFs can easily express dependencies among latent
388variables creating rich, interpretable models. We use this
389capability to represent student engagement types as a latent
390variables. We can generate more complex rules connecting
391the different features and latent variables, whichwewill dem-
392onstrate in Section 3.1.4. The HL-MRF model uses these rules
393to encode domain knowledge about dependencies among the
394predicates. The continuous value representation further helps
395in understanding the confidence of predictions. In Section 3.1,
396we detail the various featureswe collect from the data.

3973 STUDENT SUCCESS PREDICTION MODELS

398As students interact on a MOOC, detailed records are gen-
399erated, including page and video views, forum visits, forum
400interactions such as voting, posting messages and replies,
401and graded elements such as quizzes and assignments. In
402this section, we develop our models for predicting student
403success in MOOCs. Our models connect performance indi-
404cators to complex behavioral, linguistic, temporal, and
405structural features derived from the raw student interac-
406tions. Our first model, referred as the DIRECT model, directly
407encodes the dependence between student interactions and
408student success in MOOCs. We then extend the DIRECT

409model by adding latent variables modeling three types of
410student engagement: 1) active engagement, 2) passive
411engagement, and 3) disengagement. We refer to this model

4 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 12, NO. X, XXXXX 2019
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f412 as the LATENT model. In the LATENT model, we capture depen-
413 dencies among student interactions, their different types of
414 engagement, and success measures.
415 We evaluate the models by employing them to predict
416 student success in MOOCs. We consider two course success
417 indicators in MOOCs: 1) performance: whether the student
418 earns a certificate in the course, and 2) survival: whether the
419 student follows the course till the end.

420 3.1 Modeling MOOC Student Activity

421 MOOC students interact with three main resources on the
422 MOOC website: video lectures, quizzes, and discussion
423 forums. Students can watch lectures multiple times and
424 respond to on-demand quizzes during the lectures. Stu-
425 dents can interact by asking and responding to questions in
426 the forums. There are typically multiple forums organized
427 by topics, each consisting of multiple threads, and each
428 thread consisting of multiple posts. Students can respond,
429 vote (up or down) on existing posts and subscribe for
430 updates to forums threads. Each student is given a reputa-
431 tion score based on the votes on posts created by the stu-
432 dent. These activities are depicted in Fig. 1. Though our
433 datasets are all from Coursera, the core activities captured
434 in Fig. 1 are present in all other MOOCs offered by other
435 popular companies such as EdX and Udacity; they also
436 have video lectures, quizzes and discussion forum posts
437 and ability to view, follow, reply to, and upvote/downvote
438 discussion forum posts, making our features extensible
439 across platforms.
440 We quantify these activities by defining a set of PSL
441 predicates over the raw student data, and capture more
442 complex behaviors by combining these predicates into
443 expressive rules, used as features in our predictive models.
444 We categorize these predicates as either behavioral, linguis-
445 tic, structural, or temporal, and describe them in the follow-
446 ing sections.

447 3.1.1 Behavioral Features

448 Behavioral features are derived from various activities that
449 students engage in while interacting on the MOOC website.
450 These features measure the different levels of activity of
451 MOOC participants on the site. We consider three types of
452 student interactions on the discussion forums: posting in the
453 forums, voting on forum posts, and viewing forum posts.
454 We consider two types of behavioral features: aggregate and
455 non-aggregate. Aggregate features are predicates comparing

456students’ activity level to the median value of that activity
457considering all students. With the median value of student
458activity corresponding to a value of 0.5 for the predicate, all
459other values are scaled appropriately to have a value in (0,1).
460The predicates POST-ACTIVITY(USER), VOTE-ACTIVITY(USER) and
461VIEW-ACTIVITY(USER) represent aggregate features capturing
462student activity in the forums. Non-aggregate features
463directly quantify student’s behavior. The predicates POSTS

464(USER, POST) and VOTES(USER, POST) capture an instance-level log
465of users posting and voting on the discussion forums. The
466predicates POSTS and VOTES are true if the USER posts or votes
467on POST. Predicate UPVOTE(POST) is true if the post has positive
468votes and false otherwise, and predicate DOWNVOTE(POST) is
469true if a post has been down-voted. In addition to that, we
470also measure the reputation of student in the forum taking
471into account, the total number of upvotes/downvotes gained
472by the student across all the posts. We refer to this aggregate
473feature as REPUTATION(USER) in our model. The student who
474gathers the most upvotes gets a score of 1.0 and the student
475who gathers the most downvotes gets a score of 0.0 and all
476other students get a score in ð0; 1Þ.
477The second class of behavioral features capture students’
478interaction with lectures and quizzes on the MOOCwebsite.
479We measure the percentage of lectures and accompanying
480quizzes that were submitted by the student in the course.
481The features LECTURE-VIEWED(USER) captures the fraction of
482lectures submitted by the student in the course. The feature
483LECTURE-VIEWED-ONTIME(USER) captures the fraction of lectures
484submitted by the student within the due date. Similarly, for
485quizzes we derive QUIZ-SUBMITTED and QUIZ-SUBMITTED-ONTIME

486(USER). These predicates are continuous valued in [0, 1].

4873.1.2 Forum Content and Interaction Features

488MOOC forums are rich with relevant information, indica-
489tive of the students’ attitudes toward the course and its
490materials as well as the social interactions between students.
491We capture this information using two types of features, lin-
492guistic features capturing the sentiment of the post content,
493and structural features capturing the forum structure, orga-
494nized topically into threads and forums types.
495Linguistic Features. The attitudes expressed by students
496on the forums can be captured by estimating sentiment
497polarity (positive or negative) and identifying subjective
498posts. Since MOOC forums contain thousands of posts, we
499use an automated tool, OpinionFinder [34] to avoid manual
500annotation. The tool segments the forums posts into senten-
501ces, and assigns subjectivity and polarity tags for each sen-
502tence. Based on its predictions, we define two predicates,
503POLARITY(POST) and SUBJECTIVE(POST). Both predicates are calcu-
504lated by normalizing the number of subjective/objective
505tags and positive/negative polarity tags marked by Opin-
506ionFinder. The normalization keeps these values in the ½0; 1�
507interval, where values close to 0.0 indicate that the post has
508negative polarity and values close to 1.0 indicate that the
509post has positive polarity.
510Table 1 show some examples of posts having negative
511polarity and positive polarity scores. Most negative senti-
512ment posts in MOOC forums are on logistic issues as evi-
513denced in Table 1. Posts that get a value around 0.5 are
514either neutral posts or posts with both positive and negative
515sentiment words (Table 2). Positive sentiment posts mostly

Fig. 1. Structure of MOOC student activity.
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516 are either feedback posts or posts that thank the instructor
517 or other students when they respond to their queries. In our
518 models, we especially focus on positive and negative polar-
519 ity posts as indicated by POLARITY(POST) and :POLARITY(POST).
520 Structural Features. Forums are structured entities, orga-
521 nized by high-level topics (at the forum level) and specific
522 topics (thread level). Including these structural relationships
523 allows our model to identify structural relations between
524 forum posts and connect them with students participating in
525 the forum discussions. The predicates representing forum
526 structure are SAME-THREAD(POST1, POST2) and SAME-FORUM

527 (THREAD1, THREAD2), which are true for posts in the same
528 thread and threads in the same forum, respectively. These
529 predicates capture forum interaction among students and
530 propagate performance, survival and engagement values among
531 them. Table 3 gives posts from some example threads. We
532 observe that posts in the same thread often contain posts on
533 topics that have certain amount of connectivity as considered
534 by [35]. Even if this is not the case, the students posting on the
535 same threads, may have a certain amount of overlap in inter-
536 ests. In our rules, we model this interaction and how it influ-
537 ences their respective survival capabilities using the SAME-
538 THREAD and SAME-FORUM predicates. These rules also help us
539 use behavioral and interaction features from students to have
540 strong signals to infer performance, survival, and engagement
541 values for students who have less behavioral information. For
542 example, in Table 3, we find that post 1 and 2 are both report-
543 ing the same issue. Looking closely at the posts, both the stu-
544 dents seem to be interested in completing the assignment and
545 are likely to have similar performance and survival. So it is

546possible to improve prediction accuracy for the students
547based on the features and prediction of the other student.

5483.1.3 Temporal Features

549Student activity levels change over the span of the course. Stu-
550dents are often active at early stages and lose interest as the
551course progresses. To include signals of how student activity
552changes over time, we introduce a set of temporal features.
553We divide the course into three time periods: start, mid, and
554end. The time period splits are constructed by dividing the
555course by duration into three equal chunks. The temporal fea-
556tures LAST-QUIZ, LAST-LECTURE, LAST-POST, LAST-VIEW and LAST-VOTE

557indicate the time-period in which each last interaction of the
558user occurred. These features measure to what lengths the
559user participated in different aspects of the course.

5603.1.4 Constructing Complex Rules

561Weuse the features above to construct PSL rules using logical
562connectives, as demonstrated in Table 4. We construct mean-
563ingful combinations of predicates to model student engage-
564ment and student success. Our rules combine features across
565the different feature categories, discrete and continuous fea-
566ture values, and observed, latent, and target variables to cap-
567ture intricate dependencies in the data. For example, the first
568rule in Table 4 combines the posting activity of user U relative
569to other students in the class (POST-ACTIVITY) with reputation of
570the user in the forums to infer student success. This rule cap-
571tures that students posting high-quality posts (given by repu-
572tation) show greater signs of succeeding in the class. This is
573helpful in discerning between students who post a lot and

TABLE 1
Negative and Positive Sentiment Posts

polarity example post

polarity = 0.25 JSTOR allowed 3 items (texts/writings) on my ‘shelf’ for 14 days. But, I read the items and wish to
return them, but cannot, until 14 days has expired. It is difficult then, to do the extra readings in the
“Exploring Further” section of Week 1 reading list in a timely manner. Does anyone have any ideas
for surmounting this issue?

polarity = 0.0 There are some mistakes on quiz 2. Questions 3, 5, and 15 mark you wrong for answers that are cor-
rect.

polarity = 0.9 Kudos to the Professor for a great course!

TABLE 2
Posts Having Both Negative and Positive Sentiment

polarity = 0.45 This course is very interesting. I initially had some trouble, but managed to do well.
polarity = 0.4 I am sort of disappointed that my final grade did not turn out to be that good. But I enjoyed the course

and look forward to the next course in the sequence.

TABLE 3
Example Posts in a Thread

polarity = 0.0 I was just looking at the topics for the second essay assignments. The thing is I don’t see what the
question choices are. I have the option of Weeks and I have no idea what that even means. Can some-
one help me out here and tell me what the questions for the second essay assignment are I think my
computer isn’t allowing me to see the whole assignment! Someone please help me out and let me
know that the options are.

polarity = 0.25 I’d appreciate someone looks into this at the earliest. I am having the same problem with the essay
assignments. Thanks..

polarity = 0.78 Hopefully the essay assignments now open for you. Thanks for reporting this.
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f574 students who post few highly upvoted posts. Similarly, the
575 third rule combines posting in forums and the polarity of
576 forum posts to capture that students posting positive senti-
577 ment posts are more likely to engage and succeed in the
578 course. The PSL models associate these rules with student
579 success, either directly or indirectly using latent variables. We
580 explain this process in Section 4.

581 3.2 Student Engagement in MOOCs

582 Student engagement cannot be directly measured from the
583 data. The interpretable nature of our models (i.e., encoded in
584 first order logic) makes it possible to abstract definitions of
585 engagement in latent engagement variables using combina-
586 tions of observed features and student success target varia-
587 bles. We therefore treat student engagement as latent
588 variables and associate various observed features to one or
589 more forms of engagement. Drawing analogies from class-
590 room settings and adapting them to the online settings, we
591 model three types of student engagement. These three types
592 of engagement are denoted by three engagement variables,
593 ACTIVE-ENGAGEMENT, PASSIVE-ENGAGEMENT and DISENGAGEMENT.
594 ACTIVE-ENGAGEMENT represents students actively engaged in
595 the course by participating in the forums, PASSIVE-ENGAGEMENT

596 represents students following the classmaterials but notmak-
597 ing an active presence in the forums, and DISENGAGEMENT rep-
598 resents students discontinuing from engagingwith the course
599 both actively or passively.We associate different features rep-
600 resenting MOOC attributes relevant for each engagement
601 type. Our engagement scores for each student across the three
602 types of engagement are normalized to sum to 1.

603 � Active EngagementActively participating in course-
604 related discussions by posting in the forums are
605 signs of active engagement.
606 � Passive EngagementPassively following course mate-
607 rial by viewing lectures, viewing/voting/subscrib-
608 ing to posts on discussion forums, and giving
609 quizzes are signs of passive engagement.
610 � DisengagementTemporal features, indicating the last point
611 of user’s activity, capture signs of disengagement.

612 4 PSL MODELS FOR STUDENT SUCCESS

613 PREDICTION

614 We construct two different PSL models for predicting stu-
615 dent success in a MOOC setting—first, a model (denoted

616DIRECT) that directly infers student success from observable
617features, and second, a latent variable model (LATENT) that
618infers student engagement as a hidden variable to predict
619student success. By building both models, we are able to
620evaluate the contribution of the abstraction created by for-
621mulating engagement patterns as latent variables.

6224.1 PSL-DIRECT

623In PSL-DIRECT model, we model student success by using the
624observable behavioral features exhibited by the student, lin-
625guistic features corresponding to the content of posts, struc-
626tural features derived from forum interactions, and
627temporal features capturing discontinuity in activity. Mean-
628ingful combinations of one or more observable behavioral,
629linguistic, temporal, and structural features are constructed
630as described in Section 3.1 and they are used to predict stu-
631dent SUCCESS. Table 5 contains the rules used in the DIRECT

632model. U and P in Tables 5, 6, and 7 refer to USER and POST

633respectively. The DIRECT model rules allow observable fea-
634tures to directly imply student success. For ease of under-
635standing, we categorize the rules into four groups based on
636the features present in them. The first group of rules
637presents the different combinations of student interactions
638with the three course elements: discussion forums, lectures,
639and quizzes, to predict student success indicated by SUCCESS.
640Note that we capture combinations of features to infer stu-
641dent success. For example, the fourth rule in the first group
642combines posting activity, viewing activity, and voting
643activity to infer student success. Similarly, we combine
644viewing lectures (VIEW-LECTURE) and if they were viewed
645before the due date (ONTIME) to infer success. We use a simi-
646lar combination for quizzes as well combining taking quiz-
647zes (SUBMITTED-QUIZ) and the taking them before the due date
648(ONTIME-QUIZ) to infer student success. The second group of
649rules combine the behavioral features with the linguistic
650features to predict student success. Here, we combine post-
651ing on the forums, which is a behavioral feature with the lin-
652guistic features such as polarity of the post, to infer student
653success. The third set of rules capture the structural interac-
654tions of students with other fellow students in the forums
655and how that impacts each other’s course succeeding capa-
656bilities. The last set of rules capture the interaction between
657behavioral and temporal features.

6584.2 PSL-LATENT

659In the LATENT model, we enhance reasoning in the DIRECT

660model by including latent variables semantically based on
661concepts of student engagement as outlined in Section 3.2.
662We introduce three latent variables ACTIVE-ENGAGEMENT,
663PASSIVE-ENGAGEMENT, and DISENGAGEMENT to capture the three
664different types of student engagement. We present the
665LATENT model in two parts in Tables 6 and 7. In Table 6, we
666present rules connecting observable features to different
667forms of engagement. It is important to note that both our
668models have been provided the same set of features. Also,
669note that the rules in the LATENT model are identical to the
670rules in the DIRECT model presented in Table 5, except that in
671the LATENT model they are changed to imply the latent
672engagement variables instead of student success.
673In this model, some of the observable features (e.g, POST-
674ACTIVITY, VOTE-ACTIVITY, VIEW-ACTIVITY) are used to classify

TABLE 4
Constructing Complex Rules in PSL

� Behavioral Features
POST�ACTIVITYðUÞ^REPUTATIONðUÞ!SUCCESSðUÞ

LECTURE�VIEWEDðUÞ^LECTURE�VIEWED�ONTIMEðUÞ!SUCCESSðUÞ

� Forum Content Features
POSTSðU;PÞ^POLARITYðPÞ!SUCCESSðUÞ

POSTSðU;PÞ^:POLARITYðPÞ!:SUCCESSðUÞ

� Forum Interaction Feature
POSTS(U1, P1) ^ POSTS(U2, P2) ^ SAME-THREAD(P1, P2)
!SUCCESSðUÞ

� Temporal Features
LAST-QUIZ(U, T1) ^ LAST-LECTURE(U, T1) ^ LAST-POST(U, T1)
!SUCCESSðUÞ

RAMESH ET AL.: INTERPRETABLE ENGAGEMENT MODELS FOR MOOCS USING HINGE-LOSS MARKOV RANDOM FIELDS 7
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675 students into one or more forms of engagement or dis-
676 engagement. For example, in Table 6, conjunction of POST-
677 ACTIVITY and REPUTATION implies ACTIVE-ENGAGEMENT; conjunc-
678 tion of VOTE-ACTIVITY and REPUTATION implies PASSIVE-ENGAGE-

679 MENT. Rules that combine observed features that are
680 indicative of more than one form of engagement, such as
681 POST-ACTIVITY and VOTEACTIVITY, are left unchanged from the
682 DIRECT model to directly imply SUCCESS. We then connect the
683 latent engagement variables to student success using the
684 rules in Table 7. For example, ACTIVE-ENGAGEMENT and PAS-

685 SIVE-ENGAGEMENT implies SUCCESS. We consider various com-
686 binations of engagement and their relationship to SUCCESS.
687 For example, exhibiting both passive and active forms of
688 engagement implies SUCCESS. Also, exhibiting only one form
689 of engagement, either active or passive, implies SUCCESS. In
690 Section 5, we present results from training and testing our
691 models on the two success measures. The resulting model
692 with latent engagement suggests which forms of engage-
693 ment are good indicators of student success. We demon-
694 strate that the LATENT model not only produces better

695predictive performance, but also provides more insight into
696MOOC user behavior when compared to the DIRECT model.

6974.3 Weight Learning

698We train the weights for both the models using SUCCESS as
699the target variable. The weighted combinations of different
700engagement types encodes variations in student engage-
701ment types and their relationship to student success. The
702weights of the rules in the PSL-DIRECT model are learned
703by maximum likelihood estimation. This is accomplished
704by finding the parameter values (weight values) that will
705maximize the likelihood of the data given the parameters.
706In the PSL-LATENT model, due to the presence of latent
707variables, the rule weights are learned by performing
708expectation maximization (EM), which iterates alternatively
709between estimating the values of the latent variables and
710weight values till a local optimum solution is achieved. This
711is carried out by first estimating the expected value of the
712latent engagement variables in the current setting of the
713weights. Then, using the estimated expected values of latent

TABLE 5
Rules from the PSL-DIRECT Model

PSL-DIRECT RULES

Rules combining behavioral features
POST�ACTIVITYðUÞ^REPUTATIONðUÞ!SUCCESSðUÞ

VOTE�ACTIVITYðUÞ^REPUTATIONðUÞ!SUCCESSðUÞ

VIEW�ACTIVITYðUÞ^REPUTATIONðUÞ!SUCCESSðUÞ

POST�ACTIVITYðUÞ^VIEW�ACTIVITYðUÞ^VOTE�ACTIVITIYðUÞ!SUCCESSðUÞ

:POST�ACTIVITYðUÞ!:SUCCESSðUÞ

:VOTE�ACTIVITYðUÞ!:SUCCESSðUÞ

:VIEW�ACTIVITYðUÞ!:SUCCESSðUÞ

POST�ACTIVITYðUÞ^:REPUTATIONðUÞ!:SUCCESSðUÞ

POSTSðU;PÞ^REPUTATIONðUÞ!SUCCESSðUÞ

VIEWED�LECTUREðUÞ!SUCCESSðUÞ

:VIEWED�LECTUREðUÞ!:SUCCESSðUÞ

VIEWED�LECTUREðUÞ^ONTIMEðUÞ!SUCCESSðUÞ

VIEWED�LECTUREðUÞ^:ONTIMEðUÞ!:SUCCESSðUÞ

SUBMITTED�QUIZðUÞ!SUCCESSðUÞ

:SUBMITTED�QUIZðUÞ!:SUCCESSðUÞ

SUBMITTED�QUIZðUÞ^ONTIME�QUIZðUÞ!SUCCESSðUÞ

SUBMITTED�QUIZðUÞ^:ONTIME�QUIZðUÞ!:SUCCESSðUÞ

SUBMITTED�QUIZðUÞ^SUBMITTED�QUIZðUÞ!SUCCESSðUÞ

Rules combining behavioral and linguistic features
POSTSðU;PÞ^POLARITYðPÞ!SUCCESSðUÞ

POSTSðU;PÞ^:POLARITYðPÞ!:SUCCESSðUÞ

Rules combining behavioral and structural features
POSTSðU1 ;P1Þ^POSTSðU2 ;P2Þ^SUCCESSðU1Þ ^ SAME�THREADðP1 ;P2Þ!

SUCCESSðU2Þ

POSTSðU1 ;P1Þ^POSTSðU2 ;P2Þ^SUCCESSðU1Þ ^ SAME�FORUMðP1;P2Þ!

SUCCESSðU2Þ

Rules combining behavioral and temporal features
LAST�POSTðU;startÞ!:SUCCESSðUÞ

LAST�LECTUREðU;startÞ!:SUCCESSðUÞ

LAST�QUIZðU;startÞ!:SUCCESSðUÞ

LAST�POSTðU;midÞ!:SUCCESSðUÞ

LAST�LECTUREðU;midÞ!:SUCCESSðUÞ

LAST�QUIZðU;midÞ!:SUCCESSðUÞ

LAST�POSTðU;endÞ!:SUCCESSðUÞ

LAST�LECTUREðU;endÞ!SUCCESSðUÞ

LAST�LECTUREðU;endÞ!:SUCCESSðUÞ

LAST�QUIZðU;endÞ!SUCCESSðUÞ

LAST�QUIZðU;endÞ!:SUCCESSðUÞ

LAST�QUIZðU;endÞ^LAST�LECTUREðU;endÞ^LAST�POSTðU;endÞ!SUCCESSðUÞ

LAST�QUIZðU;endÞ^LAST�LECTUREðU;endÞ^LAST�POSTðU;endÞ!:SUCCESSðUÞ

TABLE 6
Rules from the PSL-LATENT Model Capturing Dependencies
between Observed Features and Latent Engagement Variables

PSL-LATENT RULES (PART 1)

Rules combining behavioral features
POST�ACTIVITYðUÞ^REPUTATIONðUÞ!ACTIVE�ENGAGEMENTðUÞ

VOTE�ACTIVITYðUÞ^REPUTATIONðUÞ!PASSIVE�ENGAGEMENTðUÞ

VIEW�ACTIVITYðUÞ^REPUTATIONðUÞ!PASSIVE�ENGAGEMENTðUÞ

POST�ACTIVITYðUÞ^VIEW�ACTIVITYðUÞ^VOTE�ACTIVITIYðUÞ!SUCCESSðUÞ

REPUTATION!ACTIVE�ENGAGEMENTðUÞ

:POST�ACTIVITYðUÞ!:ACTIVE�ENGAGEMENTðUÞ

:VOTE�ACTIVITYðUÞ!:PASSIVE�ENGAGEMENTðUÞ

:VIEW�ACTIVITYðUÞ!:PASSIVE�ENGAGEMENTðUÞ

POST�ACTIVITYðUÞ^:REPUTATIONðUÞ!:ACTIVE�ENGAGEMENTðUÞ

POSTSðU;PÞ^REPUTATIONðUÞ!ACTIVE�ENGAGEMENTðUÞ

VIEWED�LECTUREðUÞ!PASSIVE�ENGAGEMENTðUÞ

:VIEWED�LECTUREðUÞ!:PASSIVE�ENGAGEMENTðUÞ

VIEWED�LECTUREðUÞ^ONTIMEðUÞ!PASSIVE�ENGAGEMENTðUÞ

VIEWED�LECTUREðUÞ^:ONTIMEðUÞ!:PASSIVE�ENGAGEMENTðUÞ

VIEWED�LECTUREðUÞ^POST�ACTIVITYðUÞ!PASSIVE�ENGAGEMENTðUÞ

SUBMITTED�QUIZðUÞ!PASSIVE�ENGAGEMENTðUÞ

SUBMITTED�QUIZðUÞ!:PASSIVE�ENGAGEMENTðUÞ

SUBMITTED�QUIZðUÞ^ONTIME�QUIZðUÞ!PASSIVE�ENGAGEMENTðUÞ

Rules combining behavioral and linguistic features
POSTSðU;PÞ^POLARITYðPÞ!ACTIVE�ENGAGEMENTðUÞ

POSTSðU;PÞ^:POLARITYðPÞ!:ACTIVE�ENGAGEMENTðUÞ

Rules combining behavioral and structural features
POSTSðU1 ;P1Þ^POSTSðU2 ;P2Þ^ACTIVE�ENGAGEMENTðU1Þ ^ SAME�THREADðP1 ;P2Þ!

ACTIVE�ENGAGEMENTðU2Þ

POSTSðU1 ;P1Þ^POSTSðU2 ;P2Þ^ACTIVE�ENGAGEMENTðU1Þ ^ SAME�FORUMðP1 ;P2Þ!

ACTIVE�ENGAGEMENTðU2Þ

Rules combining behavioral and temporal features
LAST�POSTðU;startÞ!DISENGAGEMENTðUÞ

LAST�LECTUREðU;startÞ!DISENGAGEMENTðUÞ

LAST�QUIZðU;startÞ!DISENGAGEMENTðUÞ

LAST�POSTðU;midÞ!DISENGAGEMENTðUÞ

LAST�LECTUREðU;midÞ!DISENGAGEMENTðUÞ

LAST�QUIZðU;midÞ!DISENGAGEMENTðUÞ

LAST�POSTðU;endÞ!DISENGAGEMENTðUÞ

LAST�POSTðU;endÞ!ACTIVE�ENGAGEMENTðUÞ

LAST�LECTUREðU;endÞ!DISENGAGEMENTðUÞ

LAST�LECTUREðU;endÞ!PASSIVE�ENGAGEMENTðUÞ

LAST�QUIZðU;endÞ!DISENGAGEMENTðUÞ

LAST�QUIZðU;endÞ!PASSIVE�ENGAGEMENTðUÞ

LAST�QUIZðU;endÞ^LAST�LECTUREðU;endÞ^LAST�POSTðU;endÞ!SUCCESSðUÞ

LAST�QUIZðU;endÞ^LAST�LECTUREðU;endÞ^LAST�POSTðU;endÞ!:SUCCESSðUÞ
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714 variables and the ground truth values of target outcome
715 variables, the new weights are estimated by finding the val-
716 ues of the parameters that will maximize the likelihood of
717 the data given the parameter values.

718 5 EMPIRICAL EVALUATION

719 Here, we present our detailed experimental evaluation of
720 our models. We conduct extensive experiments to answer
721 the following questions.

722 1) How effective are our models at predicting student
723 success: performance and survival in online courses?
724 2) How effective are our models at predicting student
725 survival considering student interactions only from
726 early part of the course?
727 3) How effective are our models at predicting student
728 survival on previously unseen courses and how reli-
729 ably can they predict student survival on unseen
730 courses by considering student interactions from
731 only the early part of the course?
732 4) How useful are our different classes of features in
733 predicting student success, across different time
734 periods in the course?
735 5) How useful are the values learned by the latent
736 engagement variables?

737 5.1 Datasets and Experimental Setup

738 We evaluate our models on seven Coursera MOOCs at Uni-
739 versity of Maryland: Surviving Disruptive Technologies,Women
740 and the Civil Rights Movement, two iterations of Gene and the
741 Human Condition, and three iterations ofDeveloping Innovative
742 Ideas for NewCompanies. These courses cover a broad spectrum
743 of topics spanning across humanities, business, and sciences.
744 We refer to these courses as DISR, WOMEN, GENE-1, GENE-2, INNO-
745 1, INNO-2 and INNO-3, respectively. DISR is 4 weeks, WOMEN is 5
746 weeks, GENE is 8 weeks, and INNO is 4 weeks in duration. Our
747 data consists of anonymized student records, grades, and
748 online behavior recorded during each course duration.
749 Fig. 2 shows the number of participants in different
750 course-related activities. Of the total number of students
751 registered, around 5 percent of the students in DISR-TECH and
752 WOMEN, 14 percent in GENE-1, 21 percent in GENE-2, 7 percent
753 in INNO-1, 15 percent in INNO-2, and 5 percent in INNO-3

754complete the course. In all the courses, the most prominent
755activity exhibited by students while on the site is viewing
756lectures. Hence, we rank students based on number of
757lectures viewed, as a baseline (denoted LECTURE-RANK in our
758tables) for comparison. The other prevalent activities inc-
759lude submitting quizzes and viewing forum content.
760Observing the statistics, DISR and WOMEN have a higher per-
761centage of total registered students participating in forums
762compared to GENE and INNO courses. We also run various
763classical machine learning models (SVM, Logistic Regres-
764sion, Multi-layer Perceptron, Linear Regression, Decision
765Trees) using all the features included in our model except
766the features that these models are not capable of represent-
767ing (structural features) and compare against against the
768best performing one (indicated as classical ML model in
769Tables 8 and 9). These models use all the features except
770structural features that capture specific structural relation-
771ships among different users/posts that are unique to statis-
772tical relational models such as HL-MRFs.
773We evaluate the model on the following metrics: area
774under the precision-recall curve for positive and negative
775labels and area under the ROC curve. We use ten-fold cross-
776validation, leaving out 10 percent of the data for testing and
777revealing the rest for training the model weights. Statisti-
778cally significant differences, evaluated using a paired t-test
779with a rejection threshold of 0.01, are typed in bold.

7805.2 Student Performance Analysis

781We conduct experiments to assess how effective our models
782are in predicting student performance, as measured both by
783their official grade and whether they complete the course
784requirements. We also look at the key factors influencing stu-
785dent performance in the online setting as determined by our
786model. We filter the dataset to include only students that par-
787ticipated in at least one of the possible course related activi-
788ties. For these students, we label the ones who earn a
789certificate from the course as positive instances (PERFORMANCE

790= 1.0) and students that did not as negative instances (PERFOR-

791MANCE = 0.0). In our datasets, we observe that the percentage
792of students with performance = 1.0 is around 40� 50 percent
793of the filtered set of students. These labels are used as ground
794truth to train and test the models. Our experimental results
795are summarized in Table 8, and show performance values for
796the DIRECT and LATENT PSL models compared to the LECTURE-
797RANK and CLASSICAL ML MODEL baseline. We observe that the
798LATENT PSLmodel performs better at predicting students per-
799formance, outperforming both the DIRECT, LECTURE-RANK, and
800CLASSICAL ML MODELmodels.

Fig. 2. Comparison of number of students participating in course-related
activities in seven courses.

TABLE 7
Rules from the PSL-LATENT Model Capturing Dependencies
between Latent Engagement Variables and Student Success

PSL-LATENT RULES (PART 2)

Rules combining latent engagement variables
PASSIVE�ENGAGEMENTðUÞ!SUCCESSðUÞ

:PASSIVE�ENGAGEMENTðUÞ!:SUCCESSðUÞ

ACTIVE�ENGAGEMENT!SUCCESSðUÞ

:ACTIVE�ENGAGEMENT!:SUCCESSðUÞ

PASSIVE�ENGAGEMENTðUÞ^ACTIVE�ENGAGEMENT!SUCCESSðUÞ

PASSIVE�ENGAGEMENTðUÞ^:ACTIVE�ENGAGEMENT!SUCCESSðUÞ

PASSIVE�ENGAGEMENTðUÞ^:ACTIVE�ENGAGEMENT!:SUCCESSðUÞ

:PASSIVE�ENGAGEMENTðUÞ^ACTIVE�ENGAGEMENT!SUCCESSðUÞ

:PASSIVE�ENGAGEMENTðUÞ^ACTIVE�ENGAGEMENT!:SUCCESSðUÞ

:PASSIVE�ENGAGEMENTðUÞ^:ACTIVE�ENGAGEMENT!:SUCCESSðUÞ

DISENGAGEMENT!:SUCCESSðUÞ

RAMESH ET AL.: INTERPRETABLE ENGAGEMENT MODELS FOR MOOCS USING HINGE-LOSS MARKOV RANDOM FIELDS 9
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801 To better understand which behavioral factors provide
802 more predictive information, we examine the weights our
803 models learned at training time. The rules involving viewing
804 lectures and viewing forumposts have highest weights in the
805 DIRECT learned model, indicating the importance of these fea-
806 tures in predicting performance. The other prominent fea-
807 tures which get high weights in the learned model are
808 posting in forums, and reputation of student in the forums.
809 In the LATENT model, rules corresponding to passive engage-
810 ment have highest weights in the learned model for predict-
811 ing performance. This emphasizes the importance of passive
812 forms of engagement in online settings. This is followed by
813 rules corresponding to active engagement, indicating that
814 active forms of engagement are also predictive of student suc-
815 cess in online courses, but fall second to passive forms of
816 engagement. Rules corresponding to disengagement gain
817 highweights for predicting student drop out.

818 5.3 Student Survival Analysis

819 Our experiments in the student survival models are aimed
820 at measuring student survival by understanding factors
821 influencing students’ survival in the course, engagement
822 types and changes in engagement, and the effectiveness of
823 prediction at different time periods of the course. For sur-
824 vival analysis, we consider all registered students in the
825 course. We observe that the percentage of survived students

826is around 5� 10 percent in the total number of students.
827Note that while we filter students based on their activity for
828predicting performance, here we apply no filtering and con-
829sider all students enrolled in the course. By not filtering the
830students based on their activity enables our models to be
831used directly off-the-shelf for predicting survival without
832the need for any pre-processing. As can be observed from
833Fig. 2, a high proportion of students drop out from MOOCs,
834leading to a huge class imbalance in the data. By using a
835combination of filtering (for predicting performance) and
836no filtering (for predicting survival), we demonstrate the
837utility of our models in two settings: i) when there is little or
838no class imbalance, and ii) when class imbalance is present.
839Due to the huge class imbalance in the data, models that can
840identify students who will survive the course are more valu-
841able in this setting. The LECTURE-RANK and CLASSICAL ML MODEL

842baselines can predict dropouts reasonably well, but its com-
843paratively low precision and recall for positive survival
844(AUC-PR pos.), with CLASSICAL ML MODEL sometimes per-
845forming worse than LECTURE-RANK, indicates that using these
846models are suboptimal for predicting survival. We consider
847all student activity during the entire course to predict
848whether each student takes the final quiz. The scores for our
849DIRECT and LATENT survival models, CLASSICAL ML MODEL, and
850LECTURE-RANK baselines are listed in Table 9. The strength of
851our models comes from combining behavioral, linguistic,
852temporal, and structural features for predicting student

TABLE 8
Performance of LECTURE-RANK, DIRECT, and LATENT Models in

Predicting Student Performance

COURSE MODEL AUC-PR
Pos.

AUC-PR
Neg.

AUC-ROC

DISR

LECTURE-RANK 0.630 0.421 0.512
CLASSICAL ML MODEL 0.397 0.623 0.505
DIRECT 0.739 0.546 0.667
LATENT 0.749 0.575 0.692

WOMEN

LECTURE-RANK 0.263 0.761 0.503
CLASSICAL ML MODEL 0.260 0.769 0.521
DIRECT 0.557 0.881 0.767
LATENT 0.732 0.959 0.909

GENE-1

LECTURE-RANK 0.503 0.482 0.476
CLASSICAL ML MODEL 0.476 0.528 0.499
DIRECT 0.814 0.755 0.817
LATENT 0.943 0.879 0.931

GENE-2

LECTURE-RANK 0.466 0.522 0.482
CLASSICAL ML MODEL 0.491 0.528 0.512
DIRECT 0.806 0.783 0.831
LATENT 0.923 0.941 0.932

INNO-1

LECTURE-RANK 0.376 0.651 0.507
CLASSICAL ML MODEL 0.380 0.621 0.501
DIRECT 0.714 0.858 0.815
LATENT 0.850 0.920 0.899

INNO-2

LECTURE-RANK 0.536 0.984 0.938
CLASSICAL ML MODEL 0.545 0.530 0.537
DIRECT 0.785 0.790 0.811
LATENT 0.892 0.876 0.881

INNO-3

LECTURE-RANK 0.239 0.813 0.543
CLASSICAL ML MODEL 0.240 0.799 0.533
DIRECT 0.586 0.930 0.835
LATENT 0.833 0.983 0.945

TABLE 9
Performance of LECTURE-RANK, DIRECT, and LATENT Models in

Predicting Student Survival

COURSE MODEL AUC-PR Pos. AUC-PR Neg. AUC-ROC

DISR

LECTURE-RANK 0.333 0.998 0.957
CLASSICAL ML MODEL 0.343 0.998 0.957
DIRECT 0.393 0.997 0.936
LATENT 0.546 0.998 0.969

WOMEN

LECTURE-RANK 0.508 0.995 0.946
CLASSICAL ML MODEL 0.049 0.951 0.500
DIRECT 0.565 0.995 0.940
LATENT 0.816 0.998 0.983

GENE-1

LECTURE-RANK 0.688 0.984 0.938
CLASSICAL ML MODEL 0.139 0.861 0.500
DIRECT 0.793 0.997 0.976
LATENT 0.818 0.985 0.944

GENE-2

LECTURE-RANK 0.610 0.983 0.916
CLASSICAL ML MODEL 0.247 0.965 0.788
DIRECT 0.793 0.985 0.939
LATENT 0.848 0.997 0.980

INNO-1

LECTURE-RANK 0.473 0.992 0.930
CLASSICAL ML MODEL 0.569 0.992 0.936
DIRECT 0.597 0.995 0.950
LATENT 0.694 0.997 0.968

INNO-2

LECTURE-RANK 0.653 0.984 0.928
CLASSICAL ML MODEL 0.644 0.984 0.928
DIRECT 0.680 0.985 0.930
LATENT 0.753 0.988 0.936

INNO-3

LECTURE-RANK 0.353 0.994 0.922
CLASSICAL ML MODEL 0.141 0.986 0.792
DIRECT 0.492 0.995 0.937
LATENT 0.822 0.999 0.984
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853 survival. Our models DIRECT and LATENT significantly
854 improve on the baselines, and the LATENT model outper-
855 forms the DIRECT model.

856 5.4 Early Survival Prediction

857 Predicting student survival can provide instructors with a
858 powerful tool if these predictions can be made reliably
859 before the students disengage and drop out. We simulate
860 this scenario by training our model over data collected early
861 in the course. We divide the course into three equal parts
862 according to the duration of the course: start, mid, and end.
863 We combine start and mid time periods to get data till mid
864 part of the course, which we refer to as start-mid. start-end
865 refers to data collected over the entire course. In all, we con-
866 sider five time-periods in our experiments: start, mid, end,
867 start-mid, and start-end. The student survival labels are the
868 same as for the complete dataset (i.e., whether the student
869 submitted the final quizzes/assignments at the end of the
870 course), but our models are only given access to data from
871 the early parts of the course. All features are re-calculated to
872 include data from only the specific time period in consider-
873 ation. For example, POSTS(U,P) is modified to only include
874 posts in that specific time period.
875 Table 10 lists the performance metrics for our two models
876 using different splits in the data. Similar to the results in
877 Table 9, the change in the AUC-PR (Neg.) scores are negligi-
878 ble and close to optimal for all models because of class
879 imbalance. To highlight the strength our models, we only
880 report the AUC-PR (Pos.) scores of the models. Early predic-
881 tion scores under start, mid, and start-mid indicate that our
882 model can indeed make early survival predictions reliably.
883 As the data available is closer to the end of the course,

884models make better predictions. Similar to the previous
885experimental setting, the LATENT model achieves the highest
886prediction quality. We observe that the LATENT model consis-
887tently outperforms the DIRECT model on all time periods
888across seven courses. The LATENT model also significantly
889outperforms the DIRECT model in the start time period, mak-
890ing it a very useful tool for instructors to predict student
891survival early on in the course.
892From the results, it appears that the middle phase (mid) is
893the most important phase to monitor student activity for
894predicting whether the student will survive the length of
895the course. Our model produces higher AUC-PR values
896when using data from the mid phase, compared to the set-
897tings where we use data from the start phase, and an almost
898equal value when compared to start-mid. We hypothesize
899that this is due to the presence of a larger student popula-
900tion in the start phase that fails to remain engaged until the
901end. This phenomenon is typical in both traditional and
902online classrooms where students familiarize themselves
903with the course and then decide whether to stay or drop
904out. Eliminating data collected from this population helps
905improve our prediction of student survival, as indicated by
906an increase in performance values for mid.

9075.5 Survival Prediction on Unseen Courses

908So far, we demonstrated the predictive ability of our models
909in predicting survival on courses by training on data from
910the same course. But for new courses which haven’t yet
911accumulated performance and survival data for students, it
912is not possible to train on data from the same iteration of the
913course. Models trained on other courses, but having good
914predictive power in predicting student success on new or
915previously unseen courses will be very beneficial. Predicting
916student survival on courses in progress helps instructors
917monitor and track student engagement and initiate inter-
918ventions promptly before students disengage and dropout.
919We demonstrate the extensibility of our models in predict-
920ing survival on new courses by training on data from one
921course and testing on a different course.
922Table 11 gives the performance metrics for DIRECT and
923LATENT models, training on the course indicated by TRAIN

924COURSE and testing on data from TEST COURSE. The scores

TABLE 10
Early Prediction Performance of LECTURE-RANK, DIRECT, and LATENT

Models in Time-Periods Start,Mid, End, and Start-Mid

COURSE MODEL start mid end start-mid

DISR

LECTURE-RANK 0.204 0.280 0.324 0.269
DIRECT 0.304 0.400 0.470 0.372
LATENT 0.417 0.454 0.629 0.451

WOMEN

LECTURE-RANK 0.538 0.518 0.415 0.533
DIRECT 0.593 0.647 0.492 0.596
LATENT 0.674 0.722 0.733 0.699

GENE-1
LECTURE-RANK 0.552 0.648 0.677 0.650
DIRECT 0.647 0.755 0.784 0.692
LATENT 0.705 0.755 0.789 0.778

GENE-2
LECTURE-RANK 0.449 0.431 0.232 0.699
DIRECT 0.689 0.645 0.494 0.761
LATENT 0.754 0.755 0.809 0.820

INNO-1
LECTURE-RANK 0.221 0.118 0.403 0.378
DIRECT 0.383 0.304 0.846 0.692
LATENT 0.571 0.460 0.854 0.778

INNO-2
LECTURE-RANK 0.232 0.464 0.456 0.301
DIRECT 0.438 0.600 0.637 0.565
LATENT 0.605 0.676 0.794 0.648

INNO-3
LECTURE-RANK 0.104 0.188 0.203 0.113
DIRECT 0.202 0.405 0.478 0.293
LATENT 0.309 0.574 0.803 0.428

TABLE 11
Prediction Performance of DIRECT and LATENT Models in Training

on One Course and Testing on Another Course

TRAIN TEST MODEL AUC-PR
Pos.

AUC-PR
Neg.

AUC-ROC

INNO-1 INNO-2
DIRECT 0.721 0.989 0.945
LATENT 0.713 0.987 0.933

INNO-1 INNO-3
DIRECT 0.506 0.996 0.940
LATENT 0.719 0.998 0.978

GENE-1 GENE-2
DIRECT 0.737 0.987 0.934
LATENT 0.762 0.995 0.962

INNO-1 GENE-2
DIRECT 0.709 0.986 0.932
LATENT 0.853 0.997 0.979

GENE-2 INNO-2
DIRECT 0.723 0.990 0.945
LATENT 0.683 0.985 0.922
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925 indicate that both our models can predict survival on new
926 courses reliably. We experiment on two different combina-
927 tions of train and test courses: i) the train and test courses
928 are drawn from different iterations of the same course, ii)
929 the train and test courses are drawn from different courses.
930 For example, the first three rows in Table 11 provide results
931 for training on a different iteration of the same course. The
932 last two row gives results for training on INNO-1 and testing
933 on GENE-2, and training on GENE-2 and testing on INNO-2,
934 respectively. The second experiment is especially helpful
935 for predicting survival in new courses, which do not have
936 any previous iterations to train on. In both these cases, we
937 observe that our models achieve good predictive perfor-
938 mance comparable to training on the same course.

939 5.6 Early Survival Prediction on Unseen Courses

940 Next, we investigate the reliability of our models in early
941 prediction when they are trained on data from a different
942 course. Achieving good early prediction performance in
943 especially helpful to courses in progress, allowing instruc-
944 tors to intervene before the students disengage and dropout.
945 Here, we consider four different experiment settings, to
946 understand the capabilities of our models when trained on
947 different training data sets. We first consider the two experi-
948 ment settings that we considered in Section 5.5: i) the train
949 and test courses are drawn from different iterations of the
950 same course, ii) the train and test courses are drawn from
951 different courses. For each of these settings, we consider
952 two possible variations on the training dataset: i) training
953 on data from an entire course different from the test course
954 (indicated by start-end), and ii) training on data from the
955 time-period corresponding to the time-period of the test
956 course. Hence, in all, we consider four different combina-
957 tions of train and test datasets. We evaluate the prediction
958 performance on the most challenging early prediction
959 period start, as this time period has the least amount of

960data. Table 12 gives the early prediction results. Notice that
961both our models achieve good prediction performance,
962with the LATENT model performing better than the DIRECT

963model in most cases. We observe that training on data from
964different iteration of the same course often yields better pre-
965diction performance than training on the data from the
966same iteration of the course (comparing results for time
967period start in Tables 10 and 12), which demonstrates the
968utility of our models across iterations of the same course.
969We observe that training on entire data from a different
970course is better than training on the exact time period (indi-
971cated by start), indicating our models can potentially be
972trained on existing courses and used in earlier time periods
973of new courses to facilitate interventions.

9745.7 Feature Analysis

975Here, we perform a comprehensive feature analysis to
976understand the predictability of each feature in predicting
977student success in online courses. We group the features
978into sets of features: a) post: features related to posting in
979forums, including linguistic and structural features derived
980from forum posts, b) view: viewing forum content, c) lecture:
981viewing lectures and taking associated quizzes, d) temporal:
982temporal features, and e) all: the entire model with all the
983features. We evaluate the contribution of each feature group
984in predicting student success, by leaving each feature group
985out and observing the resulting change in the area under
986precision-recall curve and area under ROC values. To do so,
987we omit all PSL rules that mention the feature group. For
988example, to evaluate the importance of the first feature
989group post, we remove all features related to posting in
990forums such as POST-ACTIVITY, POSTS, POLARITY, and structural
991rules connecting forum posts. Feature groups have varying
992levels of predictability across the different time periods. We
993compare the predictability of the feature groups across the
994five time periods discuss in Section 5.4: start, mid, end, start-
995mid, and start-end. Figs. 3 and 4 plots the results from the
996experiments removing each feature-group across the differ-
997ent time periods. The decrease in value from all corresponds
998to the importance of each feature group in the model.
999From Figs. 3 and 4, we observe that the lecture feature
1000group is consistently important for predicting student sur-
1001vival, indicating that it is the most prevalent form of interac-
1002tion of MOOC participants on the MOOC website. This is
1003especially evident in the mid and end phases, where lecture
1004is a very important feature. In some courses, it is a very
1005strong feature from the start phase (DISR, WOMEN, GENE-1, and
1006GENE-2) (Fig. 3), while in the INNO courses (Fig. 4), it only
1007becomes relevant in the mid and end phases. Discussion
1008forums serve as a platform connecting students worldwide
1009enrolled in the course, hence activity in the discussion
1010forums also turns out to be a strongly contributing feature.
1011Since, the concentration of forum posts in the courses ana-
1012lyzed is more in the mid and end phases, posting in forums
1013is accordingly more important during the mid and end
1014phases. Also, in the start phase of the course, most posts are
1015about students introducing themselves and getting to know
1016other people enrolled in the course. These posts are not very
1017predictive of student engagement and their subsequent per-
1018formance or survival in the course. Simply viewing content
1019on the forums (view) is also a strong feature, contributing

TABLE 12
Early Prediction Performance of DIRECT and LATENT Models in
Training on One Course and Testing on Another Course

TRAIN TEST

COURSE TIME PERIOD COURSE TIME PERIOD MODEL AUC-PR Pos.

INNO-1 start-end INNO-2 start
DIRECT 0.628
LATENT 0.658

INNO-1 start INNO-2 start
DIRECT 0.618
LATENT 0.652

INNO-1 start-end INNO-3 start
DIRECT 0.318
LATENT 0.400

INNO-1 start INNO-3 start
DIRECT 0.363
LATENT 0.394

INNO-1 start-end GENE-2 start
DIRECT 0.712
LATENT 0.885

GENE-2 start-end INNO-2 start
DIRECT 0.625
LATENT 0.657

GENE-2 start INNO-2 start
DIRECT 0.627
LATENT 0.657
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1020 consistently in all phases across all courses. In fact, from
1021 Figs. 3 and 4, we can see that the feature strength of forum
1022 views is second only to lecture views. We also observe that
1023 the effect of lecture viewing is less significant in some
1024 courses, while forum viewing is more significant instead
1025 (WOMEN, GENE-2, and INNO-3). This can be attributed to the
1026 presence of active discussions encouraged in the course by
1027 the instructor, starting discussion topics where many stu-
1028 dents participating. A larger fraction of students view these
1029 posts and use them to understand the material, hence forum
1030 viewing in these courses has a significant impact on perfor-
1031 mance. This further ascertains the importance of passive
1032 engagement in online courses. Temporal features are a strong
1033 feature in the early part of the course, particularly in the
1034 start phase across all seven courses. But, they decline as a

1035predictive feature in the mid and end phases. The data sug-
1036gests that this is due to the larger volume of students drop-
1037ping out in the early part of the course, making it an
1038excellent predictor for student survival in the start phase.
1039As the student population grows steady, temporal features
1040start to decline as a predictive feature.
1041We observe a similar trend when we observe the weights
1042of the rules in our DIRECT and LATENT models. We observe that
1043the rules containing features from the lecture feature-group
1044obtain the highest learned weights. This is followed by rules
1045containing the view feature group. Following this, in the latent
1046model, are rules containing ENGAGEMENT-PASSIVE, which is fol-
1047lowed by rules containing ENGAGEMENT-ACTIVE. From this we
1048note that ENGAGEMENT-PASSIVE ismore predictive of student suc-
1049cess than ENGAGEMENT-ACTIVE, which conforms to the observa-
1050tions in the classroom settings. The next prominent set of
1051rules are rules containing the post feature group. This is fol-
1052lowed by rules containing the temporal features in early time
1053periods. Rules containing all other features come after the
1054rulesmentioned above.

10555.8 Gaining Insight from Latent Engagement
1056Assignments

1057So far, we demonstrated the utility of the latent engagement
1058variables in performance prediction. Going beyond measur-
1059ing the impact of engagement on performance prediction,

Fig. 3. Bar graph showing AUC-PR (Pos.) value upon removal of each
feature from the DIRECT model across time periods.

Fig. 4. Bar graph showing AUC-PR (Pos.) value upon removal of each
feature from the DIRECT model across time periods.
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1060 we are interested in understanding the value of the engage-
1061 ment information our model uncovers.
1062 In this section, we further dissect the latent engagement
1063 values to see how student engagement evolves as the course
1064 progresses. We track the changes in engagement assign-
1065 ments patterns for several interesting student populations
1066 and discuss potential explanations for these changes. We
1067 categorize students that drop out of the course according to
1068 the time period in which they dropped out. We analyze the
1069 student engagement values predicted by the model for three
1070 groups of students—(1) students dropping out in the mid
1071 phase, (2) students dropping out in the end phase, and (3)
1072 students continuing until course completion.
1073 We train our models on data from start, mid, and end
1074 phases of the course and record the engagement values for
1075 the students in these three periods.We consider three groups
1076 of students: 1) students dropping out in themid phase, 2) stu-
1077 dents dropping out in the end phase, and 3) students continu-
1078 ing till the end. Students dropping out in the mid phase stop
1079 participating in course activities sometime during middle
1080 phase. Similarly, students dropping out in the end phase stop
1081 participating in the course sometime during the end phase.
1082 The students are classified into one of the engagement types
1083 by considering the dominant value of engagement as pre-
1084 dicted by the model. Using this we distinguish between the
1085 different engagement types for different populations of

1086students and uncover their movement from one engagement
1087type to another and understand how engagement-mobility
1088patterns relate to student survival.
1089Fig. 5 describes the student engagement values predicted
1090by the model for the three classes of students. For each stu-
1091dent group, we provide a bar graph, showing the different
1092engagement assignment levels at each time span (start, middle,
1093end). The labels D, EA and EP refer to values for latent varia-
1094bles DISENGAGEMENT, ACTIVE-ENGAGEMENT and PASSIVE-ENGAGE-

1095MENT, respectively. Let us first consider Fig. 5a. In the start
1096period, we first categorize students into three forms of
1097engagement D, EA, and EP, respectively. The three engage-
1098ment types are denoted by the colors red, yellow, and green,
1099respectively in the start period. In the middle period, we cap-
1100ture the total number students in each engagement category
1101in the columns D, EA, and EP. In order to track student
1102engagement patterns, we color code the bars in the middle
1103and endphases according to the previous engagement assign-
1104ments of the students, with the colors red, yellow, and green
1105capturing the number of students with engagement type DIS-

1106ENGAGEMENT, ACTIVE-ENGAGEMENT, and PASSIVE-ENGAGEMENT in
1107the previous time period, respectively. Each bar therefore
1108consists of the combination of three smaller bars, colored dif-
1109ferently, capturing the previous engagement values.
1110In Fig. 5a, in the middle phase, there is almost equal per-
1111centage of students moving from DISENGAGEMENT, ACTIVE-
1112ENGAGEMENT, and PASSIVE-ENGAGEMENT in the start phase. EA
1113students start to move toward disengagement in the middle
1114phase. While some EP students, who are not taking quizzes
1115in middle phase, still follow the course passively, placing
1116them in EP rather than D. We hypothesize that these students
1117may be more likely to respond to intervention than the already dis-
1118engaged students. In Fig. 5b, it can be seen that, out of the stu-
1119dents that drop out eventually in the end phase, about half
1120of them are in EP. Finally, Fig. 5c suggests that most
1121engaged students only exhibit passive forms of engagement
1122in the start and mid phases of the course. While in the end
1123phase, students tend to become more actively engaged in
1124the course. All these results corroborate the importance of
1125taking into account passive engagement. Several education
1126works state the importance of passive forms of engagement
1127and their subtlety [8], [9], [10], [11]. With our thorough con-
1128struction of features contributing to passive engagement,
1129we are able to observe similar trends in the online setting. In
1130all these classes of students, passive engagement is a more
1131prevalent type of engagement than active, stressing the fact
1132that careful observation of passive engagement (which
1133includes subtle activities such as viewing forum posts) can
1134help MOOC instructors assess student health.

11356 CONCLUSION

1136In this work, we take a step toward helping MOOC instruc-
1137tors and optimizing experience for MOOC participants by
1138modeling latent student engagement using data-driven
1139methods. We formalize, using HL-MRFs, that student
1140engagement can be modeled as a complex interaction of
1141behavioral, linguistic and social cues, and we model student
1142engagement types as latent variables over these cues. We
1143demonstrate the effectiveness and reliability of our models
1144through a series of experiments across seven MOOCs from

Fig. 5. Bar-graph showing the distribution of engagement label assign-
ments at three time points throughout the class. We capture engage-
ment transition patterns by coloring the bars according to the
engagement assignments of students at the previous time point.
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1145 different disciplines, analyzing their predictive performance
1146 on predicting student success, early prediction of student
1147 survival, survival prediction on unseen courses, and a
1148 detailed feature analysis capturing the contribution of each
1149 feature group in predicting student success. Our models
1150 construct interpretations for latent engagement variables
1151 from data and predict student course success indicators reli-
1152 ably, even at early stages in the course, particularly on pre-
1153 viously unseen courses, making them very useful for
1154 instructors to assess student engagement levels. These
1155 results are a first step toward facilitating instructors’ inter-
1156 vention at critical points for courses in progress, thus help-
1157 ing improve course retention rates. The latent formulation
1158 we present can be extended to more sophisticated modeling
1159 by including additional latent factors that affect academic
1160 performance such as motivation, self-regulation and tenac-
1161 ity. Our models can also be integrated into an automatic
1162 framework for monitoring student progress and initiating
1163 instructor interventions. These compelling directions for
1164 future interdisciplinary investigation can provide a better
1165 understanding of MOOC students.
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